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ABSTRACT

The global consumption of chicken meat has surged due to its affordability, versatility, and perceived 
health benefits, making quality and safety crucial for public health and consumer trust. This study 
developed a non-destructive, real-time method for classifying chicken meat quality by integrating 
portable digital microscopes with Convolutional Neural Networks (CNNs). High-resolution images 
were captured using a 1,000× WiFi-enabled digital microscope and analyzed with two advanced CNN 
architectures, AlexNet and GoogLeNet, to categorize chicken meat into four classes: fresh, carrion, 
rotten, and formalinized. The methodology included systematic sampling and image preprocessing 
techniques—such as histogram equalization, noise reduction, and color space transformation—to 
enhance image quality and model performance. A dataset of 2,000 images was split into training 
and validation sets, with 600 images reserved for testing. Models were optimized using various 
hyperparameters, including optimizers Stochastic Gradient Descent with Momentum (SGDM), 
Adaptive Moment Estimation (Adam), Root Mean Square Propagation (RMSProp), and learning 
rates (0.0001, 0.00005). Results showed that GoogLeNet, optimized with RMSProp and a 0.00005 
learning rate, achieved the highest testing accuracy of 99.15%, outperforming AlexNet’s 98.65%. 
The study highlighted that adaptive optimizers and lower learning rates significantly improve model 
accuracy and stability. Confusion matrix analysis confirmed high precision in classifying most 
categories, with minor errors in the rotten category. This approach enhances food safety standards, 

reduces the distribution of low-quality meat, 
minimizes food waste, and improves supply 
chain traceability. The CNN-based system offers 
the poultry industry a rapid, accurate, and cost-
effective solution for automating meat quality 
assessments, boosting consumer confidence, and 
supporting global sustainability goals.
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image classification 
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INTRODUCTION

The global consumption of chicken meat has witnessed a remarkable surge over recent 
decades, establishing it as the most consumed meat worldwide, surpassing traditional 
staples such as beef and pork (Gržinić et al., 2023; Rao, 2015; Sporchia et al., 2023). 
This trend stems from chicken’s affordability, versatility in culinary applications, and 
its perceived health benefits, further bolstered by rising incomes and urbanization in 
developing countries, making poultry a staple protein source essential for global food 
security. Consequently, poultry farming has expanded to meet this growing market demand.

However, the escalation in chicken meat consumption has concurrently amplified 
concerns regarding meat quality and safety. Ensuring the integrity of chicken meat is 
paramount, as it directly impacts public health and consumer confidence. Pathogenic 
contamination, largely due to improper handling and processing, poses severe health risks, 
including foodborne illnesses (Akhlaghi et al., 2024; Gržinić, 2023). Additionally, the 
widespread use of antibiotics in poultry farming to promote growth and prevent disease 
has raised alarms about antibiotic resistance, further complicating food safety dynamics 
(Akhlaghi et al., 2024). Consumers are becoming increasingly vigilant about these 
issues, demanding greater transparency and assurance regarding the safety and quality of 
chicken meat products (Akhlaghi et al., 2024; Gržinić, 2023). This heightened awareness 
underscores the urgent need for effective quality assessment methods that can ensure the 
safety and reliability of chicken meat in the supply chain.

Traditional methods for assessing meat quality, including sensory evaluation and 
chemical analysis, present several significant drawbacks. Sensory evaluation, while useful, 
is inherently subjective and relies heavily on the expertise and consistency of human 
assessors, which can lead to variability and potential biases in quality assessments (Damez 
& Clerjon, 2011; Wu et al., 2022). Chemical analysis methods, although objective, are 
often time-consuming, expensive, and require specialized training and equipment, making 
them impractical for routine and large-scale quality monitoring (Damez & Clerjon, 2011; 
Wu et al., 2022). Moreover, these conventional techniques may not sufficiently address the 
multifaceted nature of meat quality, particularly in detecting microbial contamination or 
adulterants that can compromise food safety (Adam, 2021; Akhlaghi et al., 2024; Rebezov et 
al., 2022; Şahin et al., 2025). In contrast, an automated, CNN-based approach offers faster, 
more accurate evaluations, reducing reliance on intensive labor and subjective judgment.

Recent advancements in machine learning, particularly in the realm of CNNs, coupled 
with portable imaging technologies, offer promising avenues to address these challenges. 
CNNs have revolutionized image processing and classification tasks by enabling the 
extraction of intricate features from visual data without the need for manual intervention 
(Alzubaidi et al., 2021; Damez & Clerjon, 2011; Mienye & Swart, 2024). Their application 
in non-destructive food quality assessments has demonstrated significant potential, allowing 
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for rapid and accurate classification of meat quality based on image data (Alzubaidi et 
al., 2021; Damez & Clerjon, 2011; Mienye & Swart, 2024). For example, CNNs have 
been effectively employed to classify the quality of chicken meat through the analysis of 
hyperspectral images, which capture a broad spectrum of wavelengths and provide detailed 
insights into the meat’s composition (L. Zhou et al., 2019; Mienye & Swart, 2024). These 
technological innovations not only enhance the precision of quality assessments but also 
substantially reduce the time and labor associated with traditional methods (Hwang et 
al., 2025; Suthar et al., 2024). By enabling real-time, high-accuracy detection of quality 
attributes, CNN-based systems help prevent the distribution of substandard products, 
thereby minimizing food waste and improving traceability within the supply chain.

The integration of portable digital microscopes with CNNs represents a significant 
leap forward in the automation and efficiency of meat quality evaluation. Portable digital 
microscopes are cost-effective, easy to deploy, and capable of capturing high-resolution 
images that reveal microstructural details of meat samples (Hwang et al., 2025; Xu et al., 
2024). When combined with CNNs, these devices facilitate the real-time, non-destructive 
analysis of chicken meat, enabling the classification of various quality parameters such as 
freshness, spoilage, and the presence of adulterants (Hwang et al., 2025; Xu et al., 2024). 
This synergy not only streamlines the quality assessment process but also aligns with 
broader sustainability goals by reducing the likelihood of sending poor-quality products 
to market, which in turn curbs unnecessary waste and bolsters trust through transparent 
tracking of product integrity. The ability to monitor meat quality in real-time ensures that 
only safe and high-quality products reach consumers, thereby safeguarding public health 
and reducing environmental impact through more efficient resource utilization (Damez & 
Clerjon, 2011; Suthar et al., 2024).

Despite the promising advancements, the application of CNNs and portable imaging 
devices in meat quality assessment is still evolving, with several challenges remaining. 
One of the primary challenges is ensuring the generalizability of CNN models across 
different breeds, storage conditions, and imaging devices. Variations in these factors can 
significantly affect the performance and accuracy of classification models, necessitating 
extensive training datasets that encompass diverse scenarios (Damez & Clerjon, 2011; Xu 
et al., 2024). Additionally, the optimization of CNN hyperparameters, such as learning 
rates and optimizers, is crucial for achieving optimal performance but remains a complex 
and often trial-and-error process (Mienye & Swart, 2024). Furthermore, the practical 
implementation of these technologies in real-world settings requires addressing technical 
challenges related to device calibration, lighting variations, and data standardization to 
ensure consistent and reliable performance (Hwang et al., 2025; Suthar et al., 2024).

To address these challenges, this study aims to develop a robust CNN-based 
classification model utilizing images captured by a portable digital microscope to accurately 
evaluate chicken meat quality. By leveraging advanced CNN architectures such as 
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AlexNet and GoogleNet, the research seeks to enhance the accuracy and reliability of meat 
quality assessments while maintaining cost-effectiveness and operational simplicity. The 
study further investigates the impact of different optimizers and learning rates on model 
performance, striving to identify the optimal configuration that maximizes classification 
accuracy and minimizes computational overhead. Through comprehensive evaluation 
using a substantial dataset, the research endeavors to validate the efficacy of the proposed 
method in diverse and realistic conditions, thereby contributing to the advancement of 
non-destructive, automated meat quality assessment technologies.

METHODOLOGY

Sample Collection and Preparation

Chicken meat samples were sourced from local chicken farmers in Malang, East Java, 
Indonesia, predominantly consisting of commercial broiler chickens (Ross 308) to ensure a 
diverse representation of quality categories. The sampling procedure adhered to standardized 
protocols as outlined by the United States Department of Agriculture (USDA) and 
International Organization for Standardization (ISO), specifically referencing United States 
Department of Agriculture – Food Safety and Inspection Service (USDA-FSIS) (2021) and 
ISO 22000:2018 (ISO, 2018), which emphasize systematic sampling from various parts of 
the poultry carcass to account for variability in quality attributes such as color, texture, and 
moisture content (Taheri-Garavand et al., 2019). The procedure was organized as follows:

1.	 Each sample was categorized into one of four quality classes: (a) fresh chicken, 
(b) carrion chicken, (c) rotten chicken, and (d) formalinized chicken.

2.	 Fresh chicken was defined as meat cut within 24 hours post-slaughter, exhibiting 
bright yellowish-white coloration, clean and shiny skin, and no visible blood traces 
in muscle fibers.

3.	 Carrion chicken comprised meat from chickens that died without undergoing the 
slaughter process, displaying red-patched skin, bleeding in the head and neck, and 
reddish muscle fibers.

4.	 Rotten chicken was characterized by greenish-gray discoloration indicative of mold and 
bacterial growth, resulting from storage for six days in a chiller refrigerator at 2–4°C.

5.	 Formalinized chicken was obtained by immersing fresh chicken meat in a 10% 
formalin solution (Merck, Germany) for 24 hours at room temperature, resulting 
in sticky skin and pale meat (Söderqvist et al., 2024).

6.	 Each sample was filleted to a uniform size (no more than 7 cm in length and 1 cm 
in thickness) to ensure consistency in image acquisition.

7.	 A total of 2,000 digital images were captured, with 500 images per quality category. 
The dataset was then divided into training and validation sets at a ratio of 70:30, and 
an additional 600 images were reserved for testing. By ensuring a comprehensive 
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sampling strategy, this methodology establishes a robust foundation for accurate, real-
time classification that surpasses traditional subjective or time-consuming methods, 
ultimately benefiting the poultry industry through more reliable quality assurance.

The types of chicken meat quality categories can be seen in Figure 1, which consists of 
four classes, namely fresh chicken, carrion chicken, rotten chicken, and formalinized chicken.

Figure 1. Image acquisition results in several types of chicken meat quality: (a) Chicken meat before the 
image acquisition process, (i) fresh sample, (ii) carrion sample, (iii) rotten sample, and (iv) formalinized 
sample; (b) Image acquisition at 1,000 × magnification level, (i) fresh sample, (ii) carrion sample, (iii) rotten 
sample, and (iv) formalinized sample

(a)

(b)

i ii iii iv

i ii iii iv

Image Acquisition and Preprocessing

High-resolution images of the chicken meat samples were acquired using an W04 Wi-Fi 
Portable Digital Microscope (China), Model W04 Wi-Fi Portable Digital Microscope-1000, 
equipped with a Complementary Metal–Oxide–Semiconductor (CMOS) image sensor, 
magnification range of 50–1,000×, and a resolution of 960 × 540 pixels. Potential limitations 
of this microscope include minor variations in magnification accuracy at higher zoom 
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levels and the possibility of inconsistent focusing under suboptimal lighting conditions. 
Key steps were as follows:

1.	 The microscope was connected wirelessly to an Android 5.0 smartphone running 
HVviewing software, enabling seamless image capture under controlled lighting 
conditions.

2.	 An 8 SMD 3528 white light source with a sensitivity of 3V/lux-second was 
employed to ensure consistent illumination across all samples (Figure 2).

3.	 CNN models were developed and trained using MATLAB R2021a on an Acer NITRO 
5 AN515-52 laptop with an 8th-generation Intel Core i5 processor, 16GB RAM, and a 
4GB NVIDIA GeForce GTX 1050 GPU. This setup provided sufficient computational 
power for high-resolution image data analysis and CNN optimization.

4.	 Histogram equalization was applied to improve image contrast (Xiong et al., 2021).
5.	 Noise reduction using Gaussian filters minimized image noise and artifacts (Weli 

& Abdullah, 2024).
6.	 Color space transformation converted images from RGB to Lab* color space to 

facilitate better feature extraction (Lin et al., 2019).
7.	 Data augmentation (rotation, flipping, scaling) was employed to increase training 

data diversity, thus preventing overfitting and enhancing model robustness (Dhanya 
et al., 2022; Natho et al., 2025).

Figure 2. Image acquisition setup using a WiFi digital microscope capturing chicken meat samples under 
controlled lighting conditions
Note. LED = Light-emitting diode

LED lights

Microscope digital
Laptop

Black box

8 LED lights

CNN Model Selection and Hyperparameter Optimization

The study utilized two state-of-the-art CNN architectures, AlexNet and GoogleNet, to 
perform feature extraction and classification of chicken meat quality. These models were 
chosen due to their proven efficacy in image classification tasks and their ability to handle 
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complex feature hierarchies without extensive manual intervention (Alzubaidi et al., 2021; 
Mienye & Swart, 2024). The architectural models used in this study are AlexNet and 
GoogleNet. Known for its simplicity and effectiveness in image classification, AlexNet 
consists of five convolutional layers followed by three fully connected layers, utilizing 
ReLU activation and dropout for regularization (Alzubaidi et al., 2021). GoogleNet features 
a more complex architecture with inception modules that allow for parallel convolutional 
operations, enhancing the network’s ability to capture diverse features from the images 
(Mienye & Swart, 2024).

To optimize the performance of the CNN models, various hyperparameters were 
systematically tuned, i.e., optimizers, learning rate, epochs and batch size. Three optimizers 
were evaluated—SGDM, Adam, and RMSProp. Adam was found to perform the best in 
preliminary studies due to its adaptive learning rate capabilities, which facilitate faster 
convergence (Li et al., 2022). Two learning rates were tested—0.0001 and 0.00005. A 
smaller learning rate of 0.00005 was preferred as it provided higher accuracy and stability 
in the training process (Yoon & Kang, 2023). An optimal epoch of 30 and a batch size 
of 20 were determined through sensitivity analysis to balance training time and model 
performance. These careful optimizations ensure that the system can be implemented 
efficiently in real-world conditions, speeding up decision-making processes and thereby 
reducing the time window in which suboptimal meat might enter the market.

Evaluation Metrics Analysis

The performance of the CNN models was evaluated using a comprehensive set of metrics 
to ensure robust and reliable classification results. The primary metrics employed included 
accuracy, sensitivity, specificity, and confusion matrix. For accuracy, the proportion of 
correctly classified instances out of the total instances. Sensitivity is needed for the model to 
correctly identify positive instances within each class, and specificity is needed to correctly 
identify negative instances. Confusion Matrix provided a detailed breakdown of true positive, 
false positive, true negative, and false negative classifications for each quality category.

The dataset was split into 70% for training and 30% for validation, ensuring that 
the model was trained on a diverse set of samples and validated against unseen data to 
assess generalization. An independent test set of 600 images, not included in the training 
or validation sets, was used to evaluate the final model performance, thereby providing 
an unbiased assessment of the model’s accuracy and reliability. By leveraging such 
standardized evaluation protocols, this methodology fosters confidence in the model’s 
real-world applicability, supporting the poultry industry’s need for a scalable tool that can 
be seamlessly integrated into existing quality control workflows.

CNN was used as a modeling method for the classification of chicken meat quality as 
shown in Figure 3. After the CNN model was built, the CNN model was tested using 600 
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testing data taken on meat samples outside the training and validation data samples. This 
study used two pre-trained CNN models, i.e., AlexNet and GoogLeNet. The optimizer 
variations used in this study included SGDM, Adam, and RMSProp. Variations in learning 
rate were also carried out at values of 0.0001 and 0.00005. The best CNN model testing 
process was carried out using the confusion matrix method, using testing data. Such a 
data-driven, efficient methodology not only surpasses traditional methods in speed and 
consistency but also supports enhanced traceability and resource management by enabling 
precise quality checks at critical points in the supply chain.

Figure 3. Convolutional Neural Network structure to classify four types of chicken meat quality
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RESULTS AND DISCUSSION

Classification Performance

The primary objective of this study was to evaluate the effectiveness of two state-of-the-art 
CNN architectures, AlexNet and GoogLeNet, in classifying chicken meat quality into four 
distinct categories: fresh, carrion, rotten, and formalinized. The classification performance 
was assessed using a comprehensive dataset comprising 2,000 images for training and 
validation (70:30 split) and an independent test set of 600 images. Table 1 summarizes the 
validation and testing accuracies achieved by each CNN model combined with different 
optimizers and learning rates. The highest testing accuracy of 99.15% was achieved using 
GoogLeNet with the RMSProp optimizer and a learning rate of 0.00005.

The results indicate that both CNN architectures are highly effective in classifying 
chicken meat quality, with overall testing accuracies exceeding 95% across most 
configurations. Notably, GoogLeNet outperformed AlexNet in most scenarios, achieving a 
maximum testing accuracy of 99.15% compared to AlexNet’s highest accuracy of 98.65%. 
This aligns with previous studies highlighting the superior feature extraction capabilities 
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of deeper and more complex architectures like GoogLeNet in image classification tasks 
(Aguilar et al., 2018; Mienye & Swart, 2024). This level of performance surpasses 
traditional sensory or chemical assessments, providing the poultry industry with a rapid, 
objective, and more accurate tool for ensuring product quality.

Comparison of CNN Architecture

The comparative analysis between AlexNet and GoogLeNet reveals significant differences 
in their classification performances. GoogLeNet consistently achieved higher accuracies 
across various optimizer and learning rate settings compared to AlexNet. GoogLeNet top 
performance (99.15%) with RMSProp and a learning rate of 0.00005, along with validation 
accuracies as high as 99.00%, underscores the advantages of deeper and more complex 
architectures capable of capturing diverse features (Aguilar et al., 2018; Mienye & Swart, 
2024). These improvements mean that producers and processors can identify quality issues 
earlier and more reliably, allowing them to take corrective action before inferior products 
reach consumers.

Optimizer and Learning Rates

The study evaluated three different optimizers (SGDM, Adam, and RMSProp) and 
two learning rates (0.0001 and 0.00005) to determine their effects on the CNN models’ 
performance. Adam and RMSProp, with their adaptive learning rate capabilities, yielded 
superior results compared to SGDM. RMSProp, in particular, produced the highest 

Table 1 
CNN performance based on validation and testing data accuracy

Pre-trained CNN Optimizer Learning rate Validation accuracy (%) Testing accuracy (%)
GoogLeNet SGDM 0.0001 96.17 96.82

SGDM 0.00005 92.00 95.17
Adam 0.0001 99.00 96.32
Adam 0.00005 97.17 96.82

RMSProp 0.0001 98.50 97.85
RMSProp* 0.00005 97.83 99.15

AlexNet SGDM 0.0001 97.67 96.50
SGDM 0.00005 94.50 96.17
Adam 0.0001 98.00 95.67
Adam* 0.00005 98.50 98.65

RMSProp 0.0001 95.50 91.32
RMSProp 0.00005 94.00 94.50

Note. CNN = Convolutional Neural Network; SGDM = Stochastic Gradient Descent with Momentum; 
Adam = Adaptive Moment Estimation; RMSProp = Root Mean Square Propagation; * = Optimizer and 
learning‑rate pairing yielded optimal performance
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testing accuracy of 99.15%. A lower learning rate of 0.00005 consistently resulted in 
improved accuracy and training stability, aligning with literature suggesting that fine-
tuning hyperparameters enhances model performance (Kingma & Ba, 2014; Loshchilov 
& Hutter, 2016). Such optimized models can be seamlessly integrated into quality control 
workflows, improving the speed and consistency of assessments. By ensuring that only 
top-quality meat moves forward, this reduces the chance of spoilage in the supply chain, 
thereby minimizing waste and contributing to better traceability as each batch’s quality is 
verified before distribution.

Training and Validation

The training and validation processes were closely monitored to assess the convergence 
behavior and potential overfitting of the models. Figure 4 illustrates the accuracy and loss 
curves for the best-performing configurations of GoogLeNet and AlexNet, respectively. 
Monitoring training and validation processes revealed stable convergence and minimal 
overfitting. GoogLeNet stabilized around epoch 8 and AlexNet by epoch 5, indicating 
efficient training. The rapid convergence and stable learning curves attest to the suitability 
of the chosen architectures and hyperparameters, as well as the efficacy of preprocessing 
and augmentation steps. This training efficiency also suggests that the system can be 
deployed in real-world conditions without excessive computational demands, supporting 
scalability and wider adoption. As a result, even smaller producers or distributors can 
employ this technology, enhancing industry-wide standards and ensuring high-quality 
meat reaches consumers.

Confusion Matrix Analysis

Confusion matrices were employed to provide a detailed breakdown of the classification 
performance across the four meat quality categories. Figure 5 present the confusion matrices 
for the best-performing GoogLeNet and AlexNet models, respectively. Confusion matrices 
were used to analyze classification performance across the four categories. GoogLeNet 
accurately classified 99.30% of fresh, carrion, and formalinized samples, and AlexNet 
also demonstrated strong performance, albeit with slightly more misclassifications in the 
rotten category. The primary confusion involved rotten and fresh classes, likely due to 
subtle visual similarities. Carrion and formalinized classes were occasionally confused, 
indicating overlapping color and texture features.

These results indicate that both models perform exceptionally well in classifying most 
categories, with GoogLeNet slightly outperforming AlexNet in overall accuracy. The Rotten 
category remains the most challenging, particularly for AlexNet, which experienced higher 
misclassification rates compared to GoogLeNet. This aligns with literature suggesting 
that more complex architectures like GoogLeNet can better handle subtle differences 
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Figure 4. CNN’s learning process for the classification of types of chicken meat quality: (a) GoogLeNet with 
RMSProp optimizer and learning rate of 0.00005; (b) AlexNet with Adam optimizer and learning rate of 0.00005
Note. CNN = Convolutional Neural Network; RMSProp = Root Mean Square Propagation; Adam = Adaptive 
Moment Estimation 
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in image features (Aguilar et al., 2018; Mienye & Swart, 2024). Despite these minor 
misclassifications, the overall high precision of the models ensures that the poultry industry 
can rely on this tool to maintain quality standards. By flagging questionable products 
early, the system helps prevent low-quality items from entering the supply chain, reducing 
waste and enhancing traceability because each product can be monitored, identified, and, 
if necessary, removed at an earlier stage.

Error Analysis and Misclassification Patterns

An in-depth error analysis was conducted to understand the misclassification patterns and 
underlying causes. The primary misclassifications observed were between the rotten and 
fresh categories, as well as between carrion and formalinized categories. For both CNN 
models, the rotten category had the lowest classification accuracy. In GoogLeNet, 2 out 
of 150 rotten samples were misclassified as fresh, while in AlexNet, 7 out of 150 were 
misclassified as fresh. These misclassifications could be attributed to the visual similarities 
between severely spoiled meat and fresh meat under certain imaging conditions, such as 
lighting variations or surface moisture levels. This finding is consistent with studies that 
highlight challenges in distinguishing between similar visual attributes in food quality 
assessments (Aguilar et al., 2018; Mienye & Swart, 2024). Minor misclassifications 
occurred between carrion and formalinized categories. For instance, GoogLeNet 
misclassified 1 carrion sample as formalinized, and AlexNet did not misclassify any carrion 
samples. These errors may result from overlapping visual features, such as redness in 

Figure 5. The results of the confusion matrix on testing data: (a) GoogLeNet with RMSProp optimizer and 
learning rate of 0.00005; (b) AlexNet with Adam optimizer and learning rate of 0.00005
Note. RMSProp = Root Mean Square Propagation;  Adam = Adaptive Moment Estimation

(a) (b)
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carrion meat and discoloration in formalinized meat, which can confuse the CNN models. 
Similar patterns have been observed in other food quality classification studies, where 
certain quality attributes present overlapping visual characteristics that pose challenges for 
automated classification systems (Aguilar et al., 2018). Minor misclassifications occurred 
between carrion and formalinized categories. For instance, GoogLeNet misclassified 1 
carrion sample as formalinized, and AlexNet did not misclassify any carrion samples. 
Minor misclassifications between carrion and formalinized categories may stem from 
visual similarities in redness and discoloration. Techniques like Gradient‑weighted Class 
Activation Mapping (Grad-CAM) (Saadallah et al., 2022) could further refine the models 
by highlighting which image features lead to errors, guiding improvements in preprocessing 
or model architecture. By continually refining and improving model accuracy through 
such feedback loops, this approach ensures ongoing adaptability and robustness, making it 
more effective at preventing off-quality products from reaching consumers and sustaining 
a transparent, trustworthy supply chain.

Model Robustness and Generalization

Testing on an independent dataset validated the model’s robustness, with GoogLeNet 
achieving 99.15% and AlexNet 98.65% accuracy. This indicates strong generalization 
and suggests that the models can perform well under varied conditions. While the study 
focused on a single dataset, future work could explore cross-dataset validation to ensure 
broad applicability. Diversifying the dataset with samples from multiple regions, breeds, 
and storage conditions could further enhance robustness and make the technology even 
more attractive for global adoption.

The high performance of the models suggests that the dataset was sufficiently diverse, 
capturing a wide range of quality attributes and variations within each category. This 
diversity is crucial for training CNNs to recognize and accurately classify subtle differences 
in meat quality, enhancing their generalization performance (Elmasry & Abdullah, 2024; 
L. Zhou et al., 2019). The models’ ability to maintain high accuracy on an independent 
test set indicates their potential for real-world implementation in poultry supply chains. By 
integrating these CNN models with portable digital microscopes, it is feasible to deploy 
automated, real-time quality assessment systems that can operate reliably in various 
environmental conditions, thereby ensuring consistent meat quality and safety (Hwang 
et al., 2025; Xu et al., 2024). Such systems can be instrumental in enhancing operational 
efficiency, reducing reliance on labor-intensive traditional methods, and providing 
immediate feedback for quality control processes.

The training process for both CNN models was efficient, with GoogLeNet converging 
faster than AlexNet due to its deeper architecture and more sophisticated feature extraction 
mechanisms. The use of adaptive optimizers like RMSProp and Adam significantly reduced 
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the number of epochs required for convergence, aligning with findings that adaptive learning 
rate methods enhance training efficiency and model performance (Szegedy et al., 2015). 
This efficiency is particularly advantageous for practical deployments where computational 
resources and time are constrained. Throughout the training process, both models exhibited 
stable learning curves, with minimal fluctuations in accuracy and loss metrics. This stability 
is indicative of the models’ resilience to overfitting and their ability to consistently learn 
relevant features from the image data (Alzubaidi et al., 2021; Mienye & Swart, 2024). 
The balanced training and validation curves suggest that the models maintained a healthy 
generalization capacity, avoiding the pitfalls of overfitting that can plague complex neural 
network architectures.

The successful implementation of high-performing models on a relatively modest 
computational setup (Acer NITRO 5 AN515-52 laptop with an NVIDIA GeForce GTX 
1050 GPU) suggests that the proposed system is scalable and can be adapted to various 
hardware configurations. This scalability is essential for practical deployment in diverse 
settings, ranging from small-scale farms to large poultry processing facilities (Natho et 
al., 2025). The use of pre-trained CNN models facilitates transfer learning, allowing for 
rapid adaptation to new environments and meat types with minimal retraining, thereby 
enhancing the system’s flexibility and applicability (Saadallah et al., 2022). Despite the 
high accuracies achieved, certain limitations were noted. The rotten category exhibited 
slightly lower accuracy, particularly in AlexNet, indicating a need for further refinement 
in distinguishing highly spoiled meat from fresh samples. Additionally, the study was 
conducted under controlled laboratory conditions, which may not fully replicate the 
variability encountered in real-world environments (Nayeem et al., 2025). 

The models’ impressive performance in accurately classifying chicken meat quality has 
direct implications for the poultry industry. Unlike traditional methods that are subjective, 
time-intensive, or costly, this CNN-based approach delivers rapid, objective, and repeatable 
evaluations. By implementing this system, producers can detect low-quality meat at an 
earlier stage, ensuring that only safe, high-quality products reach the market. This not 
only builds consumer confidence but also reduces waste by preventing substandard meat 
from advancing through the supply chain. Moreover, improved traceability results from 
consistent, documented quality assessments, allowing stakeholders to quickly identify 
and address issues. These factors collectively support industry-wide upgrades in safety, 
efficiency, and resource management, ultimately encouraging the technology’s scalable 
and global implementation.

Precise identification of meat quality can significantly reduce food waste by ensuring 
that only genuinely spoiled or adulterated meat is discarded while retaining consumable 
products. This efficient utilization of resources aligns with global sustainability goals, 
promoting environmental stewardship by minimizing the environmental footprint associated 
with poultry farming and meat processing (Kilibarda et al., 2023; Suthar et al., 2024). By 
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implementing automated quality assessment systems, the poultry industry can achieve 
more sustainable operations, reducing both economic and environmental losses linked to 
food waste. The integration of portable digital microscopes and CNNs facilitates enhanced 
traceability within the poultry supply chain. Real-time monitoring and documentation of 
meat quality at various stages of processing and distribution ensure that any issues can 
be swiftly identified and addressed. This traceability not only enhances food safety by 
enabling quick identification of contamination sources but also fosters accountability and 
transparency, thereby increasing stakeholder trust and industry credibility (B. Zhou et al., 
2016; El-tahlawy et al., 2025; Suthar et al., 2024).

CONCLUSION

This study successfully demonstrated the integration of portable digital microscopes with 
advanced CNNs for the accurate classification of chicken meat quality. It provides a robust 
framework for developing automated, real-time quality assessment systems that align 
with global food safety and sustainability objectives. By employing two state-of-the-art 
CNN architectures, AlexNet and GoogLeNet, the research achieved high classification 
accuracies, with GoogLeNet outperforming AlexNet by attaining a testing accuracy of 
99.15% compared to AlexNet’s 98.65%. These results affirm that this CNN-based approach 
surpasses traditional, labor-intensive, and time-consuming methods in both speed and 
objectivity, providing the poultry industry with a more efficient tool for routine quality 
assessments. The findings highlight the critical role of optimizer selection and learning 
rate tuning in enhancing model performance. Adaptive optimizers such as RMSProp and 
Adam significantly improved classification accuracies and training stability, aligning with 
existing literature that underscores the effectiveness of these optimizers in complex image 
processing applications. Additionally, the utilization of a lower learning rate (0.00005) 
was instrumental in achieving higher accuracy and preventing overfitting, ensuring robust 
model performance. Beyond mere accuracy improvements, the proposed technology 
contributes to reducing food waste and improving traceability by quickly identifying low-
quality meat before it advances through the supply chain. This early detection prevents 
substandard products from reaching consumers, thereby minimizing discard rates and 
enabling stakeholders to maintain detailed quality records that enhance transparency. 
Implementing such a system not only bolsters consumer confidence and meets regulatory 
requirements but also fosters a more sustainable and accountable industry. In terms of real-
world implementation, the cost-effective, portable nature of the digital microscope-CNN 
framework supports scalability across different operational scales—from large processing 
plants to smaller farms. By facilitating timely, data-driven decisions about product quality, 
this approach is poised to streamline existing workflows, reduce reliance on specialized 
personnel, and integrate seamlessly into diverse supply chain environments. 
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